Q	Question		Expected Answers	Marks	Additional Guidance
1	(a)		immediately after jumping Only force is the weight/drag = 0/net force = weight acceleration = $g/9.8(1 \text{ m s}^{-2})$ (Allow ' <i>mg</i> ' for weight. Do not allow 'gravity' for weight.)	B1 B1	Alternatives accepted for <i>drag</i> are: friction/air resistance Allow: 'Has acceleration of free-fall/due to gravity' as alternative for second B1 mark
			before terminal velocity is reached Any <u>two</u> from: Drag increases (with speed) /drag \propto speed ² Net or resultant or total force decreases / weight > drag Acceleration is less than g at terminal velocity weight = drag / net force = 0 acceleration = 0 / <u>constant</u> speed or velocity (AW)	B1 B1 B1 B1 B1	 Allow: velocity instead of speed. Allow: 'drag ∞ speed' as BOD. Allow: Acceleration decreases Allow: upward force(s) = downward force/'forces balanced'
	(b)		(Transformed to) heat/thermal (energy)	B1	Not: 'Friction'/sound
	(c)		 Any two from: 1. The terminal velocity increases 2. Initial gradient/slope is the same/equal to g 3. Time taken to reach terminal velocity is longer 	B1 × 2	Allow : Initial acceleration is the same/g/9.8(1 m s ⁻²)
			Total	9	

Question		ion	Expected Answers		Additional Guidance	
2	(a)	(i)	N is normal to the ramp (judged by eye)	B1	Allow marks even if the labels N and F are omitted	
			<i>F</i> is parallel <u>and</u> up the ramp	B1		
		(ii)	$F = W \sin \theta$	B1		
	(b)	(i)	Expected answer: 'For equilibrium of an object the sum of clockwise moments about a point = sum of anticlockwise moments about the same point.'			
			clockwise moment(s) = anticlockwise moment(s)	M1	Note : The term ' <i>clockwise</i> ' to be included and spelled correctly to gain the M1 mark Note : 'net moment = 0' is equivalent to the M1 mark	
			Reference to one of the moments taken about a <u>point</u> /'equilibrium'/sum (or total or net or Σ) mentioned once	A1	Note : If M1 is lost for incorrect spelling of 'clockwise', then allow this A1 mark	
		(ii)	$200 \times 12 = F \times 75$ F = 32 (N)	C1 A1	Note: Bald answer of 32 (N) scores 2/2 marks	
		(iii)	32	C1	Possible ecf	
			$p = \frac{52}{6.0 \times 10^{-5}}$ pressure = 5.3 × 10 ⁵ (Pa)	A1	Note : Bald answer of 5.3×10^5 (Pa) scores 2/2 marks	
		(iv)	(Pressure is) greater	B1		
			because the force/ <i>F</i> is larger (to provide the same moment)	B1		
			Total	11		

C	Question	Expected Answers		Additional Guidance	
3	(a)	time = $6.9 \times 3.16 \times 10^7$ (= 2.18×10^8 s) average speed = $\frac{5.0 \times 10^{12}}{6.9 \times 3.16 \times 10^7}$ average speed = 2.29×10^4 or 2.3×10^4 (m s ⁻¹)	C1 A1	Allow: 1 mark for $5.0 \times 10^{12}/6.9 = 7.2(46) \times 10^{11} \text{ (m y}^{-1}\text{)}$ Allow: 1 mark for $\frac{5.0 \times 10^{12}}{3.16 \times 10^7} = 1.58 \times 10^5 \text{ (m s}^{-1}\text{)}$	
	(b)	distance = 0.70 × 200 (= 140 mm) or KE = $\frac{1}{2} \times 4.0 \times 10^{-6} \times 6100^2$ (= 74.4 J) work done = change in KE $F \times (0.70 \times 10^{-3} \times 200) = \frac{1}{2} \times 4.0 \times 10^{-6} \times 6100^2$ F = 530 (N) 	C1 C1 A1 C1 C1	Note: Bald answer scores 3/3 marks	
		$F = 4.0 \times 10^{-6} \times 1.33 \times 10^{8}$ F = 530 (N)	A1	Note: 0.53 (N) scores 2/3 because of 10^n error in distance 1.06×10^5 (N) scores 2/3 because '200' not taken into account 106 (N) scores 1/3 because '200' missed out and 10^n error	
		Total	5		

Question		on	er	Marks	Guidance
4	(a)		Drag increases with speed (ORA) / drag \propto speed ²	B1	
	(b)		Galileo dropped different mass balls / rolled different mass balls (down a ramp)	B1	Allow object / trolley instead of ball
			Balls hit the ground / reached the bottom (of ramp) at the same time	B1	
			(Galileo -) All objects fall with the same acceleration <u>and</u> (Aristotle -) Heavy / massive objects fall faster / quicker (than light objects)	B1	
	(c)	(i)	(The two forces are weight and drag) weight = drag	B1	Not 'gravity' for weight Allow : weight = drag + upthrust
		(ii)	When the parachute is opened, drag increases / drag is greater than the weight	B1	
			Drag decreases as the speed decreases / net force decreases	B1	
			The (magnitude of the) deceleration decreases (between 50 m s ⁻¹ and 4 m s ⁻¹)	B1	
			(At 4 m s ⁻¹) deceleration or acceleration = 0	B1	
			Total	9	

G	uestion	Answer		Guidance
5	(a)	Object moves into region 3(net) force to left / 1 (N) to the left / 8 (N) > 7 (N)and(net) force down / 2 (N) down / 12 (N) > 10 (N)	M1 A1	Allow use of labelled arrows, e.g \downarrow 2 (N)
	(b)	(When an object is in equilibrium the) sum of clockwise moments (about a point) = sum of anticlockwise moments (about the same point)	B1	Allow: summation sign Σ
	(c)	50 × 46 = weight × 14 weight = 164 (N) mass = 164/9.81 mass = 16.7 (kg) or 17 (kg)	C1 C1 A1	Possible ecf for weight calculated. Note : Using '50 × 46 = weight × 32' gives an incorrect weight of 71.9 (N). However, 1 mark can be scored through ecf for a mass of 7.3 (kg) Allow : 3 marks for 'weight = 160 N, mass = 16.3 kg or 16 kg'
		Total	6	

Question		Answers	Marks	Guidance
6	(a)	A straight line through the origin	B1	Ignore graph after 0.5 s.
	(b)	The speed (of the car) is constant	B1	Note: This can only be scored if (a) is correct
	(c)	The <u>distance</u> travelled by the car after the brakes are applied until the car stops	B1	Note: Must have reference to car 'stopping' to score the mark
	(d)	Mass (of car) $(\frac{1}{2} mv^2 = Fx$, hence braking) distance ∞ mass Speed / velocity (of car) $(\frac{1}{2} mv^2 = Fx$, hence braking) distance ∞ speed ²	M1 A1 M1 A1	Must use tick or cross on Scoris to show if the mark is awarded Allow: weight (of car) Not: 'distance increases with mass' Allow: distance $\propto m$ Not: 'distance increases with speed' Allow: distance $\propto v^2$
	(e)	Increases time (of impact / to slow down) / increases the distance (travelled by the driver) Smaller deceleration / acceleration Force is smaller because $F = ma$ and a is smaller or force is smaller because $F = E_k/x$ and x is bigger or force is smaller because $F = \frac{\Delta p}{\Delta t}$ and Δt is bigger	B1 B1 B1	Must use tick or cross on Scoris to show if the mark is awarded Not: 'slow down acceleration' Allow: $E_k = Fx$ and x is bigger Not: Prevent crashing into windscreen / steering wheel
		Total	10	